Expert Workgroup of Consensus on the application of artificial intelligence in myopia (2024)Ophthalmology Committee of International Association of Translational MedicineOphthalmic Imaging and Intelligent Medicine Branch of Chinese Medicine Education AssociationOptometry Branch of Chinese Ethnic Medical AssociationChinese Ophthalmic Imaging Study Groups
周行涛,复旦大学附属眼耳鼻喉科医院眼科,上海 200433,Email:doctzhouxingtao@163.com;邵毅,南昌大学第一附属医院眼科,南昌 330006,Email:freebee99@163.com;竺向佳,复旦大学附属眼耳鼻喉科医院眼科,上海 200433,Email:zhuxiangjia1982@126.com Zhou Xingtao, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200433, China, Email: doctzhouxingtao@163.com;Shao Yi, Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China, Email: freebee99@163.com;Zhu Xiangjia, Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200433, China, Email: zhuxiangjia1982@126.com.
参考文献魏瑞华,张红梅,刘盛鑫,等.加强我国儿童青少年近视的科学预防与控制[J].,2023,43(1)∶1-6.DOI:10.13389/j.cnki.rao.2023.0001.WeiRH,ZhangHM,LiuSX,et al.Necessity for scientific prevention and control of myopia in Chinese children and adolescents[J].,2023,43(1)∶1-6.DOI:10.13389/j.cnki.rao.2023.0001.NaidooKS,FrickeTR,FrickKD,et al.Potential lost productivity resulting from the global burden of myopia:systematic review,meta-analysis,and modeling[J].,2019,126(3)∶338-346.DOI:10.1016/j.ophtha.2018.10.029.ZhangJ,ZouH.Insights into artificial intelligence in myopia management:from a data perspective[J].,2024,262(1)∶3-17.DOI:10.1007/s00417-023-06101-5.《人工智能在干眼临床诊断中的应用专家共识(2023)》专家组,中国医药教育协会眼科影像与智能医疗分会,中国人口文化促进会角膜病与眼表疾病分会.人工智能在干眼临床诊断中的应用专家共识(2023)[J].,2023,43(4)∶253-259.DOI:10.13389/j.cnki.rao.2023.0052.Group ECoCAoAIiDE,Association OIaIMBoCME,Association CaOSDBoCPaSP.Expert consensus on clinical application of artificial intelligence in dry eyes (2023)[J].,2023,43(4)∶253-259.DOI:10.13389/j.cnki.rao.2023.0052.杨卫华,邵毅,许言午,等.眼科人工智能临床研究评价指南(2023)[J].,2023,23(7)∶1064-1071.DOI:10.3980/j.issn.1672-5123.2023.7.03.YangWH,ShaoY,XuYW,et al.Guidelines on clinical research evaluation of artificial intelligence in ophthalmology (2023)[J].,2023,23(7)∶1064-1071.DOI:10.3980/j.issn.1672-5123.2023.7.03.杨丽丹,李青蒨,陈倩茵,等.人工智能在青光眼诊断中的研究进展[J].,2023,43(6)∶500-504.DOI:10.13389/j.cnki.rao.2023.0102.YangLD,LiQQ,ChenQY,et al.Research progress of artificial intelligence in the diagnosis of glaucoma[J].,2023,43(6)∶500-504.DOI:10.13389/j.cnki.rao.2023.0102.任恺贤,杨卫华,颜智鹏.人工智能在眼底病诊疗中的应用和研究新进展[J].,2022,9(5)∶43-48.DOI:10.19450/j.cnki.jcrh.2022.05.009.RenKX,YangWH,YanZP.New progress in application and research of artificial intelligence in the diagnosis and treatment of ocular fundus diseases[J].,2022,9(5)∶43-48.DOI:10.19450/j.cnki.jcrh.2022.05.009.LiY,YipM,TingD,et al.Artificial intelligence and digital solutions for myopia[J].,2023,13(2)∶142-150.DOI:10.4103/tjo.TJO-D-23-00032.聂钊颖,张艳艳,邵毅.新技术在糖尿病视网膜病变筛查中应用的研究进展[J].,2023,43(7)∶585-588.DOI:10.13389/j.cnki.rao.2023.0118.NieZY,ZhangYY,ShaoY.Application of new technologies in screening diabetic retinopathy[J].,2023,43(7)∶585-588.DOI:10.13389/j.cnki.rao.2023.0118.BenkeK,BenkeG.Artificial intelligence and big data in public health[J/OL].,2018,15(12)∶2796[2023-11-20].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313588/.DOI:10.3390/ijerph15122796.ZhangJ,ZouH.Artificial intelligence technology for myopia challenges:a review[J/OL].,2023,11∶1124005[2023-11-20].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887165/.DOI:10.3389/fcell.2023.1124005.LiJO,LiuH,TingD,et al.Digital technology,tele-medicine and artificial intelligence in ophthalmology:a global perspective[J/OL].,2021,82∶100900[2023-11-20].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7474840/.DOI:10.1016/j.preteyeres.2020.100900.ZhangZ,WangY,ZhangH,et al.Artificial intelligence-assisted diagnosis of ocular surface diseases[J/OL].,2023,11∶1133680[2023-11-20].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981656/.DOI:10.3389/fcell.2023.1133680.ZhangC,ZhaoJ,ZhuZ,et al.Applications of artificial intelligence in myopia:current and future directions[J/OL].,2022,9∶840498[2023-11-21].https://pubmed.ncbi.nlm.nih.gov/35360739/.DOI:10.3389/fmed.2022.840498.YangY,LiR,LinD,et al.Automatic identification of myopia based on ocular appearance images using deep learning[J/OL].,2020,8(11)∶705[2023-11-21].https://pubmed.ncbi.nlm.nih.gov/32617325/.DOI:10.21037/atm.2019.12.39.LinH,LongE,DingX,et al.Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records:a retrospective,multicentre machine learning study[J/OL].,2018,15(11)∶e1002674[2023-11-21].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219762/.DOI:10.1371/journal.pmed.1002674.LiSM,RenMY,GanJ,et al.Machine learning to determine risk factors for myopia progression in primary school children:the Anyang childhood eye study[J].,2022,11(2)∶573-585.DOI:10.1007/s40123-021-00450-2.FooLL,LimG,LancaC,et al.Deep learning system to predict the 5-year risk of high myopia using fundus imaging in children[J/OL].,2023,6(1)∶10[2023-11-22].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879938/.DOI:10.1038/s41746-023-00752-8.FangJ,ZhengY,MouH,et al.Machine learning for predicting the treatment effect of orthokeratology in children[J/OL].,2022,10∶1057863[2023-11-22].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9853046/.DOI:10.3389/fped.2022.1057863.FanY,YuZ,TangT,et al.Machine learning algorithm improves accuracy of ortho-K lens fitting in vision shaping treatment[J/OL].,2022,45(3)∶101474[2023-11-22].https://linkinghub.elsevier.com/retrieve/pii/S1367-0484(21)00096-5.DOI:10.1016/j.clae.2021.101474.LuL,ZhouE,YuW,et al.Development of deep learning-based detecting systems for pathologic myopia using retinal fundus images[J/OL].,2021,4(1)∶1225[2023-11-22].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548495/.DOI:10.1038/s42003-021-02758-y.TangJ,YuanM,TianK,et al.An artificial-intelligence-based automated grading and lesions segmentation system for myopic maculopathy based on color fundus photographs[J/OL].,2022,11(6)∶16[2023-11-22].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206390/.DOI:10.1167/tvst.11.6.16.VaradarajanAV,PoplinR,BlumerK,et al.Deep learning for predicting refractive error from retinal fundus images[J].,2018,59(7)∶2861-2868.DOI:10.1167/iovs.18-23887.YooTK,RyuIH,KimJK,et al.Deep learning for predicting uncorrected refractive error using posterior segment optical coherence tomography images[J].,2022,36(10)∶1959-1965.DOI:10.1038/s41433-021-01795-5.ShenY,WangL,JianW,et al.Big-data and artificial-intelligence-assisted vault prediction and EVO-ICL size selection for myopia correction[J].,2023,107(2)∶201-206.DOI:10.1136/bjophthalmol-2021-319618.KimJ,RyuIH,KimJK,et al.Machine learning predicting myopic regression after corneal refractive surgery using preoperative data and fundus photography[J].,2022,260(11)∶3701-3710.DOI:10.1007/s00417-022-05738-y.WilliamsR,BakshiS,OstrinEJ,et al.Continuous objective assessment of near work[J/OL].,2019,9(1)∶6901[2023-11-22].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503122/.DOI:10.1038/s41598-019-43408-y.VerkicharlaPK,RamamurthyD,NguyenQD,et al.Development of the FitSight fitness tracker to increase time outdoors to prevent myopia[J/OL].,2017,6(3)∶20[2023-11-23].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477631/.DOI:10.1167/tvst.6.3.20.BhandariKR,OstrinLA.Validation of the Clouclip and utility in measuring viewing distance in adults[J].,2020,40(6)∶801-814.DOI:10.1111/opo.12735.YeB,LiuK,CaoS,et al.Discrimination of indoor versus outdoor environmental state with machine learning algorithms in myopia observational studies[J/OL].,2019,17(1)∶314[2023-11-23].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751881/.DOI:10.1186/s12967-019-2057-2.AmirsolaimaniB,PeymanG,SchwiegerlingJ,et al.A new low-cost,compact,auto-phoropter for refractive assessment in developing countries[J/OL].,2017,7(1)∶13990[2023-11-23].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656604/.DOI:10.1038/s41598-017-14507-5.AngM,WongCW,HoangQV,et al.Imaging in myopia:potential biomarkers,current challenges and future developments[J].,2019,103(6)∶855-862.DOI:10.1136/bjophthalmol-2018-312866.中国医药教育协会数字影像与智能医疗专委会,中国医药教育协会智能医学专委会.全球眼科图像公开数据库使用指南(2022)[J].,2022,42(12)∶925-932.DOI:10.13389/j.cnki.rao.2022.0190.Association DIaIMBoCME,Association IMSCoCME.Guidelines for the use of global public databases on ophthalmic images (2022)[J].,2022,42(12)∶925-932.DOI:10.13389/j.cnki.rao.2022.0190.BadanoA,GraffCG,BadalA,et al.Evaluation of digital breast tomosynthesis as replacement of full-field digital mammography using an in silico imaging trial[J/OL].,2018,1(7)∶e185474[2023-11-23].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324392/.DOI:10.1001/jamanetworkopen.2018.5474.ChaKH,PetrickN,PezeshkA,et al.Evaluation of data augmentation via synthetic images for improved breast mass detection on mammograms using deep learning[J/OL].,2020,7(1)∶012703[2023-11-23].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6872953/.DOI:10.1117/1.JMI.7.1.012703.